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Optical spectroscopy methods were used to investigate the size quantization of the energy spec- 
trum of excitons in CuCl microcrystals dispersed in a transparent dielectric matrix. The size of 
microcrystals grown by diffusion-type precipitation of a new phase in a supersaturated solid 
solution was deliberately varied from tens to thousands of angstroms. It was found that the profile 
of a luminescence line of free excitons was due to the dispersion of the size of microcrystals 
described by the Lifshitz-Slezov distribution for the recondensation stage of the growth of micro- 
crystals. A theory of the size quantization of excitons allowing for the complex structure of the 
valence band was developed. A comparison with the experimental results yielded the energy band 
parameters describing the energy spectrum of excitons in a CuCl crystal. 

I. INTRODUCTION 

It has been recently demonstrated that ultradisperse 
semiconducting microcrystals can be grown inside a trans- 
parent dielectric matrix.' A method for the growth of micro- 
crystals by a diffusion-type precipitation of a new phase of a 
supersaturated solid solution developed by Golubkov et al.' 
makes it possible to control the size of the resultant particles 
over a wide range from tens to thousands of angstroms. The 
silicate glass matrix is transparent in a wide range of wave- 
lengths from ultraviolet to the near infrared part of the spec- 
trum, so that it is possible to use optical spectroscopy meth- 
ods for investigating the properties of microcrystals. 

Heterophase systems of this kind represent a new class 
of objects for investigating various "size" effects in semicon- 
ductors and, in particular, the quantum size effect. In fact, a 
semiconducting microcrystal in a dielectric matrix repre- 
sents a three-dimensional potential well of size which limits 
the region of motion of quasiparticles. Consequently, free 
motion of quasiparticles in a microcrystal is possible only for 
certain values of the energy and the energy spectrum in 
q~an t i zed . ' ~  

The problem of manifestation of the size quantization 
effect in the exciton and interband absorption spectra of 
spherical semiconducting microscrystals is considered 
theoretically in Ref. 5. It is shown that the influence of the 
quantum size effect on the absorption and luminescence 
spectra of microcrystals depends strongly on the ratio of the 
exciton radius a,, to the microcrystal radius a. In the case 
when a,, ( a ,  an exciton is quantized as a whole and the influ- 
ence of the boundaries of a microcrystal on the exciton bind- 
ing energy is exponentially small. In the other limiting case, 
when a,,%a, we can ignore the Coulomb interaction 
between electrons and holes. In the interband absorption 
case we should observe aperiodic oscillations associated 
with transitions between the size quantization levels of holes 
and electrons. 

The exciton size quantization effect was reported for 
CuCl microcrystals in Ref. 2 and preliminary results of an 
investigation of the effect were published in Ref. 3. The other 

limiting case ofa,,  )a was also studied using CdS microcrys- 
tals, which exhibited oscillations in the interband absorption 
spectrum due to the size quantization of the energy spectrum 
of free  electron^.^ 

In the case when a,, ( a  the position of the exciton line 
maximum considered as a function of the average radius of 
microcrystals ii is described by the following expression5: 

where Eg is the band gap; E,, is the binding energy of an 
exciton; M is the translational mass of an exciton; K is a 
numerical coefficient governed by the size distribution of 
microcrystals. However, the model of a simple exciton ener- 
gy band with a parabolic dispersion law considered in Ref. 5 
does not describe the real band structure of CuCl crystals 
and gives only the first approximation to the experimental 
situation. 

We shall report a detailed investigation of the depen- 
dences of the position and profile of the exciton lumines- 
cence and absorption lines of CuCl microcrystals on their 
size. We shall show that the shift and broadening of these 
lines are due to quantization of the energy spectrum of exci- 
tons and can be described allowing for the steady-state size 
distribution of microcrystals established during their 
growth. We shall develop a many-band theory of the size 
quantization effect allowing for the nonparabolicity of the 
exciton subband. We shall compare the experiment and the- 
ory to find the parameters of the energy band structure of 
CuCl crystals. 

II. INVESTIGATION OF THE DISPERSION OF THE 
MICROCRYSTAL SIZE 

Microcrystals of CuCl were grown in the interior of a 
silicate glass matrix to which compounds of copper and 
chlorine were added in concentrations of the order of 1% 
(Ref. 1). The microcrystals were grown by high-temperature 
annealing of such glasses via diffusion-type precipitation of a 
new phase in a supersaturated solid solution. The microcrys- 
tal size was varied deliberately by altering the annealing 
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(temperature and duration) conditions. The average micro- 
crystal radius and the concentration of the semiconducting 
phase in each sample were determined by the method of low- 
angle x-ray scattering and the approximation of monodis- 
perse spherical particles.' Since the annealing temperature 
was higher than the melting point of CuCl, it was natural to 
assume that the semiconducting phase particles were liquid 
during growth and spherical because of the surface tension. 
Therefore, we postulated that the microcrystals formed as a 
result of solidification of such drops were indeed near- 
spherical. 

Samples investigated in the present study were subject- 
ed to an additional low-temperature annealing. This resulted 
in a considerable narrowing of the exciton line and, in the 
final analysis, allowed us observe directly a manifestation of 
the size dispersion of microcrystals in the exciton lumines- 
cence spectra of these microcrystals. 

g 1. Luminescence spectra of CuCl microcrystals 

Crystals of CuCl have the cubic lattice. The valence 
band of these crystals is split by the spin-orbit interaction 
into a doubly degenerate subband I', and a quadruply degen- 
erate subband r,. In contrast to the usual diamondlike semi- 
conductors, the r, and r, valence subbands of CuCl crystals 
have an inverse distribution, i.e., the doubly degenerate sub- 
band is located "above" the quadruply degenerate ~ubband .~  
Therefore, the exciton lines observed in the luminescence 
spectra of these crystals are due to the annihilation of exci- 
tons associated with the simple (only spin degenerate) va- 
lence subband r,. 

Figure 1 shows the luminescence spectra of four sam- 
ples containing microcrystals with different values of the 
average radius, recorded at T = 4.2 K. The luminescence 
was excited by a krypton-laser emission line (A = 356.4 nm). 
It is clear from this figure that the spectra of the annealed 
samples containing microcrystals of sufficiently large size 
consisted of a narrow line with a maximum at fiw = 3.178 
eV, which was due to the annihilation of an exciton bound to 
a neutral acceptor., The position and width of this line were 
practically independent of the microcrystal size and its in- 
tensity fell rapidly on increase in the size. The luminescence 
spectrum included also a line due to the annihilation of free 

I, rel. units 

excitons. It is clear from the figure that a reduction in the 
microcrystal size caused this line to shift toward shorter 
wavelengths and, as in the case of the absorption spectra,*v3 
this was due to the quantum size effect. 

The difference between the behavior of the free and 
bound exciton lines was due to the fact that the wave func- 
tion of a bound exciton was localized near an impurity state 
and was insensitive to the presence of microcrystal boundar- 
ies. Therefore, the dependences of the positions of the free- 
and localized-exciton lines on the microcrystal size were 
fundamentally different. 

It is also clear from the same figure that the shift of the 
free-exciton line was accompanied by its considerable broad- 
ening. This broadening may be due to the dispersion of the 
size of microcrystals and the size distribution function can 
be found by analyzing the profile of the exciton line. Since 
this line is due to the annihilation of excitons associated with 
the simple valence subband, the profile can be described by 
the size quantization theory developed in Ref. 5. 

g 2. Exciton-line profile due to the size dispersion of 
microcrystals 

In a quantitative analysis of the experimental results on 
the size quantization it is necessary to know the actual form 
of the size distribution function of microcrystals. This is im- 
portant both to allow for the influence of the size dispersion 
on the optical spectra [coefficient K in Eq. (I)] and to deter- 
mine the average size of microcrystals from the data on low- 
angle x-ray scattering. 

As concluded in Ref. 1, the growth of microcrystals 
occurred during the recondensation stage of the process of 
diffusion-type precipitation of a phase in a saturated solid 
solution when the growth of large crystals was due to the 
dissolution of small ones and the concentration of the semi- 
conducting phase remained constant. This process was dis- 
cussed in greater detail in the theoretical paper of Lifshitz 
and S l e z ~ v , ~  who found a function P(a/Z) describing the 
steady-state size distribution of the new particles which was 
established during recondensation growth. The explicit 
form of this function was used in Ref. 5 to obtain an expres- 
sion for the exciton-spectrum intensity distribution resulting 
from the size variation of the microcrystals. An allowance 
for the "intrinsic" width of an exciton level made it possible 
to rewrite this expression as follows: 

'I. 

where D ( x )  is a Gaussian function describing the intrinsic 
width G of an exciton level and the dimensionless integration 
variable is u = a/Z. 

It follows therefore that the system (2) gives the position 
and profile of an exciton line determined by the size quanti- 

FIG. 1 .  Luminescence spectra of samples containing c u c l  microcrystals zation in the case when the size distribution of the micro- 
of different radii H @): 1 )  140; 2) 56; 3) 45; 4) 22. T = 4.2 K. crystals is governed by the Lifshitz-Slezov function. It must 
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I. rel. units A, rel. units 

FIG. 2. Comparison of the experimental (continuous curves) and theoreti- 
cal (points) profiles of the exciton luminescence lines of samples studibed at 
T = 4.2 K and containing CuCl microcrystals of different radii ii (A): 1 )  
56; 2) 32; 3) 22. 

be stressed that the only parameter that determines the size 
quantization of excitons in a simple parabolic energy band is 
their effective mass. 

Experimental profiles of the free-exciton luminescence 
lines determined for three samples differing in respect of the 
average particle radius are compared in Fig. 2 with the theo- 
retical results obtained by numerical integration of the sys- 
tem (2). The best agreement was obtained for the following 
values of the exciton mass in Eq. (2): 1) 1.9mo; 2) 1.9m0; 3) 
2.0m0 (m, is the mass of a free electron). The intrinsic width 
G of an exciton level does not affect the position of the exci- 
ton line maximum, but governs only its long-wavelength 
wing. The value of G was found to be independent of the 
microcrystal size and in the case of the spectra shown in Fig. 
2 the best agreement was obtained for the following values: 
1) G = 1.0 meV; 2) G = 2.5 meV; 3) G = 3.5 meV. The agree- 
ment between the experimental and calculated profiles con- 
firmed that the size distribution of microcrystals in the in- 
vestigated samples was described by the Lifshitz-Slezov 
distribution. 

It is shown in Ref. 5 that in the case of the Lifshitz- 
Slezov distribution the value of the coefficient K in Eq. (1) is 
K = 0.67. Moreover, since the intensity of the scattering of x 
rays is proportional to the square of the volume of a micro- 
crystal, an analysis of the results of the x-ray measurements 
carried out in the approximation of monodisperse particles 
overestimated somewhat the average microcrystal radius Z. 
A numerical analysis of the results of x-ray measurements 
carried out allowing for the size dispersion of microcrystals 
showed that the average (over the Lifshitz-Slezov distribu- 
tion) microcrystal radius was Z = 0.86a, where a is the value 
obtained in the monodisperse approximation. The values of 
the coefficients found in this way were used later in an analy- 
sis of the experimental results on the quantum size shift of 
exciton levels. 

Ill. SIZE QUANTIZATION OF EXCITONS IN A COMPLEX 
ENERGY BAND 

0 1. Experimental results 

In contrast to the luminescence spectra, we found two 
lines in the absorption spectra of CuCl microcrystals. The 
long-wavelength line 2, was due to the creation of excitons 

FIG. 3. Absorption spectra (here, A is the optical density) of samples 
~ontaining CuCl microcrystals of different radii: 1)  ii = 270 A; 2) H = 29 
~ ; 3 ) 1 = 2 2 A .  T=4 .2K.  

associated with the upper doubly degenerate valence sub- 
band I?,. The position of this line agreed resonantly, for all 
the microcrystal sizes, with the position of the free-exciton 
luminescence line considered in the preceding section. The 
short-wavelength line Z ,,, was due to the excitation of exci- 
tons associated with the quadruply degenerate valence sub- 
band r, and the dependence of its behavior on the micro- 
crystal size could not be described by the theory developed 
for a simple parabolic band.5 

Figure 3 shows the spectra of three samples, differing in 
respect of the average microcrystal radius, determined at 
T = 4.2 K. Clearly, an increase in the microcrystal size re- 
sulted in a short-wavelength shift of both lines. The shift of 
the exciton line associated with a quadruply degenerate va- 
lence band was much stronger. We plotted in Fig. 4 (points) 
the positions of the maxima of both lines as a function of the 
reciprocal of the square of the average microcrystal radius. 
At high values of the radius the positions of these lines 
hz, = 3.201 eV and &II,,,~ = 3.276 eV agreed well with the 
published experimental data.6 We also used the method of 
least squares to plot the straight lines approximating the ex- 
perimental points in Fig. 4. 

FIG. 4. Dependences of the positions of the maxima of the exciton absorp- 
tion lines Z ,,, and Z, at T = 4.2 K on the reciprocal of the square of the 
average radius of microcrystals. 
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The slope of the plot of the short-wavelength exciton- 
line shift associated with the upper doubly degenerate va- 
lence subband could be substituted in Eq. (1) to find, for a 
simple parabolic band, the effective mass of excitons which 
was M = (1.9 5 0.2)m0. This value was in good agreement 
with the published value M = (2.1 f 0. l)mo (Ref. 9). 

It is clear from Fig. 4 that the rate of the short-wave- 
length shift of the Z ,,, line was greater than that of the Z,  
line. This was surprising because the translation mass of one 
of the two excitons associated with the quadruply degenerate 
subband was greater than for the exciton associated with the 
doubly degenerate subband and, consequently, the quantum 

size shift of the Z ,,, line should have been less. The results 
obtained could be explained only by the theory of the size 
quantization of excitons that allowed for the real energy 
band structure of CuCl crystals. 

Q 2.1 heory 

The binding energy of excitons in CuCl is 200 meV and 
is considerably greater than the spin-orbit splitting A = 70 
meV. The Hamiltonian describing the translation of such an 
exciton in the case of low momentap, where the kinetic ener- 
gy of an exciton is much less than its binding energy, may be 
comparable with the value of A: 

~ = 1 ' 3 2 ~ ~ - ~ ,  pLz=p,2i- p,2, p-=px-ip,, It is clear from Eqs. (6b) and (7) that an increase in the mo- 
- - - -  

and the energy is measured from the position of the ground 
state of an exciton associated with the quadruply degenerate 
valence subband. This Hamiltonian is written down ignor- 
ing the electron spin, exchange electron-hole interaction, 
and longitudinal-transverse splitting. The numerical values 
of the Luttinger constants y, and y (Ref. 10) describe fully 
the dispersion law of the ground state of an exciton in such 
an energy band considered in the spherical approximation. 
The quantities y, and y may be associated with the values of 
the translation masses of excitons consisting of heavy and 
light holes from the r, band (M,, , M, ) and a hole from the r, 
band (M, ): 

In fact, Eq. (3) readily yields the dispersion law of an exciton 
in such a band: 

Eh= ( ~ ~ - 2 y ) p ~ / 2 m ~ ,  (54 

(5b) 
Hence, if yp2/mo(A, we can obtain the dispersion law of an 
exciton allowing for the weak nonparabolicity: 

which determines also the values of the translation masses at 
the bottom of the band given by Eq. (4). In the other limiting 
case, A( yp2/mo, we find that 

mentum p increases considerably the mass of an exciton 
formed from a hole in the spin-orbit split-off band. 

A theory of the size quantization of excitons in semi- 
conducting CuCl spheres can be developed assuming that 
the walls of a potential well are infinitely high at the well 
boundaries. Therefore, the wave function of an exciton on 
the surface of a well may be assumed to be zero. The wave 
functions of an exciton in a spherically symmetric well can 
be found if we begin by writing down the general form of 
spherically symmetric solutions of the Hamiltonian (3). In 
general, this can be done employing the results of Ref. 11. 
However, in describing our experiments it is sufficient (as 
shown below) to develop a theory of the size quantization in 
semiconductors with a&uadrupiy degenerate valence band 
r,. In the case of an exciton associated with the band r,, a 
theory of its size quantization allowing for the nonparaboli- 
city can be constructed using the Hamiltonian (3) only in the 
case of the states with the momentum 1 = 0, i.e., for those 
states which can be observed in the absorption and lumines- 
cence, in accordance with the selection rules of Ref. 5. 

The Hamiltonian describing the energy spectrum of 
carriers at the edge of a quadruply degenerate band r, con- 
sidered in the parabolic approximation can be deduced from 
Eq. (3) if we equate to zero the sixth and seventh columns and 
rows in this Hamiltonian. It is shown in Ref. 12 that spheri- 
cally symmetric solutions of this Hamiltonian can be classi- 
fied in accordance with the total momentum values F = 1/2, 
3/2,. . ., which are all good quantum numbers. The states 
with a given value of F are (2F + 1) - fold degenerate in 
respect of the projection of the moment M of the vector F. 
The wave functions of such spherically symmetric states 
with given F and M are1' 
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$= (2F+1)Ih r, (-l)'-""RF,, ( r )  
value of F. As in the case of a simple parabolic band, the 
value of k,,, can be represented in the form 

kF, n=qnF/a, (13) 
(8) where q, fl is the set of numerical coefficients dependent on 

the ratio of the masses of light and heavy quasiparticles 
where Y,,, ( 0 , ~  ) are the spherical (harmonic) functions; I and P = M, /&fh . In the case when j? = 1 (y = O), the set of 
m are the values of the orbital momentum and its projection; numbers q, f: is identical with the roots of the ~~~~~l func- 
p and XP are the eigenvalues and the eigenvectOrs the tions q,,,, (Ref. 5) (here, n is the serial number of the root of a 
operator modified Bessel function j, with I = F - 3/2), exactly as in 

"i the case of a simple parabolic band. If j?( 1, we can expand 

J z  = 
~ I z  0 the Bessel functions with small arguments as a series in Eq. 
0 -liz 0 
0 0 - 3 1 9 ,  

(1 1) and this gives 
6F-3 cp " 1 ( ) j~-a/s(qnF) 0. (2;;) are the 3 j Wigner symbols; M = m +p;  p = * 1/2 jF+'h(CPnF)  =-2~+8 - 

B-0 

and + 3/2. In the case of even (relative to the coordinate 
origin) solutions, the wave function for given values of F and (14) 

M contains two terms with I amounting to F + 1/2 and Hence, it is clear that when the difference between the 

F - 3/2. Using the system of equations for R 3/2,, from Ref. masses is large so that MI ( M ,  , the numbers q, are again 

12, we can readily show that the radial wave functions of the identical with the roots of a Bessel function j, shifted in re- 

even states of a spherically symmetric well should have the s p e c t ~ ~  the Iby 27 i.e.y with p ~ +  1/2,n. For 

form values of F and n this may increase considerably the roots of 
q, f on reduction in @. For example, for excitons with the 

RF F+1~,=AjF+1,2 ( k r )  +BjF+l,  (krp"2),  momentum F = 3/2 (which are the only ones that contribute 
(9)  to the exciton absorption in CuC1) the first root of Eq. (1 1) for 

RF,  F-  ,:=A1jF-3/? ( k r )  +BrjF-,,> (kr$") ,  F = 3/2 - p ;I2 varies approximately from 3.14 to 5.76, i.e., 

wherej, are the modified Bessel functions related to the Bes- it varies almost twofold. 

sel functions with the half-integer argument jl(z) = (T/ We shall now consider how the influence of the many- 

2 z ) ' I 2 ~ ,  + & (z); the energy of motion is band nature of the Hamiltonian (3) affects the size quantiza- 
tion levels of excitons associated with the valence subband 
r,. The general form of the wave function of an exciton de- 
scribed by the Hamiltonian (3) in a spherically symmetric 
potential well is as follows for the states with the momentum 
I = 0 (Ref. 11): 

whereas the ratio of the masses of the light and heavy parti- 
cles is j?= (y, - 2y)/(y1 + 2y). The vanishing of the wave 
function of an exciton at the boundary of a sphere of radius a 
yields the following system of equations for the determina- 
tion of the energy levels: 

\ \ 
Rp, F + I / ~  ( a )  =AjF+li, ( k ~ ,  .a) +BjF+~l, ( k ~ ,  nap '1 -8, 

(10) where R, (r) and R,(r) are the radial wave functions for 
. U F  . 

,F-vJI (a) = A  tg - I F  -:it ( kRVna)  -B ctg (kF,nap'h) =o, which we can obtain the following system of equations if we 
2 2 substitute Eq. (15) into Eq. (3): 

which can be solved if 

jp+g (kF,&)jF-v, (kF,napli2) 

We have used here the relationship 

tgz ( u F / ~ )  = (2F+3)/ (6F-3). 

Solving Eq. (1 1) for k,,, and then using the relationship + ---r2-+e+6 
between E and k, we can find the energy levels 2 rZ 8r ar 

where E = m,,E/fi2,6 = moA/#. Its solutions are the Bessel 
2, functions 

where n is the serial number of the root of Eq. (1 1) for a given Rh(r )  =C jz  ( k r )  , R, ( r )  =CJO ( k r ) ,  (17) 
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and the coefficients Ch and C, are related by the following 
system of equations: 

The condition for the solubility of the system (18) is given by 
the dispersion law of excitons, identical with Eq. (6b). On the 
other hand, for each value of the energy E there are two 
solutions of the (17) type differing in respect of k. In the 
energy range - A < E < 0 one of these values is imaginary 
and the square of the absolute value of k,,, is 

*{[2E(y i+y )  +A (71-27) 1'-4E(E+A) (TI -2y)  ("(+4"1}"'" I .  
(19) 

Then, the radial components of the wave functions of an 
exciton considered in this energy range are 

Rh(r)  =Chsj2 (k,r)  +Chh12 ( khr ) ,  

RS ( r )  =C870 (k,r) +C,hIo ( khr ) ,  
(20) 

where I, (2) are the modified Bessel functions with the com- 
plex argument, whereas the coefficients C f: are related by 

Using next the boundary condition Rh (a) = R, (a) = 0, we 
obtain the following equation for determination of the size 
quantization levels: 

io (k.a) I2 ( h a )  -i2 (k.a) I ,  (kha) 

~ ( ~ + 6 - ' / , y , k , ~ )  kh2/ ( ~ + 6 + ' / ~ y ~ k ~ "  kS2=0. P I  
We shall consider the case of a weak nonparabolicity 

when yk, 2tiz/mo(A. However, we have kh a) 1 and I,(kh a)/ 
I,,(kh a) -, 1. Next, applying the expansion (6b), we readily 
obtain from Eq. (22) that 

We shall solve this equation by the method of successive 
approximations. We shall find first the root of the equation 

For the ground state this root is g, O = k: a = IT. Next, we 
obtain the correction to this root: 

which gives Ak, = 12~ftiz/y,m&~A. Substituting the val- 
ue of Ak, into the expansion (6b), we obtain the correction to 
the size quantization levels of an exciton formed from a hole 
in the I?, band and related to its nonparabolicity: 

Therefore, the nonparabolicity of the exciton spectrum 
should be manifested as a deviation from the linear depen- 
dence of the short-wavelength shift of the exciton line on 1/ 
a2. 

5 3. Discussion of results 

In the preceding subsection we found theoretically the 
quantum-size shift of the exciton lines associated with the 
subbands r7 and r8 of a semiconductor sphere of radius a, 
described by Eqs. (28) and (12) or (13), respectively. The ex- 
perimental results agree with these formulas if we allow for 
the dispersion of the size of the spheres. We found experi- 
mentally (see Sec. 11) that the distribution of the particle size 
of such heterophase systems grown by recondensation is de- 
scribed by the Lifshitz-Slezov function.' Then, allowing for 
the dispersion of the size of the spheres in the way it was done 
in Ref. 5, we can determine the dependence of the profile and 
positions of both exciton lines on the radius ii averaged over 
the distribution. In the case of excitons associated with the 
valence subband r7 the position of the line maximum is de- 
scribed by the expression 

Here, the last term proportional to l/Z4 allows for the exci- 
ton spectrum nonparabolicity. We also see from Fig. 4 that 
the short-wavelength shift is a practically linear function of 
l/Z2. Hence, it follows that the nonparabolicity of the exci- 
tons associated with the subband I?, of CuCl is weak. There- 
fore, the exciton line shift is the same as for a simple parabol- 
ic energy band with an.effective mass M, = mdy,.  

The position of the maximum of the exciton line asso- 
ciated with the valence subband r, depends as follows on ii: 

Therefore, the short-wavelength shift of such an exciton 
with a fourfold degeneracy of the energy spectrum at k = 0 
is, as expected, inversely proportional to its "heavy" mass 
Mh = md(y1 - 2y). However, the dependence on the ener- 
gy band parameters includes also g, :I2 representing the first 
root of Eq. (1 1) corresponding to F = 3/2: 

Here, the parameterB = (y, - 2y)/(yl + 2y) depends on the 
ratio y/y,. Equation (29) replaces the corresponding equa- 
tion j0(p ) = 0 for a simple energy band and, therefore, in the 
case of a complex band the value of g, :" replaces the first 
root of the Bessel function jo(x), which is the number n in 
Eqs. ( I )  and (27). 
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FIG. 5. Dependence of the ratio of the shifts of the exciton absorption lines 
Z,,, and Z3 on the value of y/y,. 

In an analysis of the experimental results it is conven- 
ient to use not the absolute shift of the exciton lines 

A f i o z , ( Z )  =f iwz ,  ( a )  -E,+E,,, 

Af ioz , ,  , (a) =fioz,, , ( E )  4 , - A + & , ,  

but the ratio of the shifts which, in the parabolic approxima- 
tion, is of the form [see Eqs. (27) and (28)] 

i.e., it is independent of the microcrystal size and is governed 
only by the ratio of the band parameters y/y,. Figure 5 
shows a theoretical plot of this dependence. We found nu- 
merically the first root p :/' of Eq. (29). It is clear from this 
figure that the short-wavelength shift A h z l , ,  of the excitons 
associated with the valence subband r, is, because of the 
coefficient p :I2, greater than A h z 3  right up to y / y ,  ~ 0 . 3 5 .  
This is why the slope of the dependence h Z l t 2 ( Z )  in Fig. 4 is 
greater than that of hz3 (Z). 

Figure 4 can be used to find the ratio of the short-wave- 
length shifts AhZ1,2/AfiWZ3 = 1.4. It is clear from Fig. 5 

that this ratio corresponds to either y / y ,  = 0.13 or y/ 
y, = 0.28. We can use the mass Ms = 1.9m0 of the excitons 
associated with the valence subband r,, which corresponds 
to y,  = 0.53, and thus obtain two alternative values of the 
constant y: y = 0.07 or y = 0.15. It is clear from Eq. (27) that 
the value of y determines the degree of nonparabolicity of the 
exciton band associated with the r, valence subband and 
this makes it possible to select one of the values of y by com- 
parison with the experimental results. Figure 6 shows the 
dependences of the short-wavelength line shift Z, on the re- 
ciprocal of the square of the average radius of microcrystals 
plotted for both values of y. We can see that y = 0.07 indeed 
corresponds to a weak nonparabolicity and describes better 
the experimental points. 

The values of the Luttinger parameters y,  = 0.53 
f 0.06 and y = 0.070 f 0.007 obtained in this way from Eq. 
(4) can be used to determine the translation masses of exci- 

FIG. 6. Theoretical dependence of the position of the Z3 line on the reci- 
procal of the square of the average radius of microcrystals, plotted allow- 
ing for the nonparabolicity of the exciton energy band. The curves corre- 
spond to different values of the parameter y: 1) 0.07; 2) 0.15. The 
experimental results obtained at 4.2 K are represented by points. 

tons. For the excitons associated with the upper valence 
subband r, the mass is Ms = (1.9 + 0.2)mo, in good agree- 
ment with the published data.9 The excitons associated with 
the quadruply degenerate subband r, are characterized by 
the masses M, = (2.6 f 0.2)m0 and M, = (1.5 + (0.2)mo, 
which-to the best of our knowledge-were determined by 
us for the first time. 

It is therefore clear that an investigation of the depen- 
dences of the positions of the exciton lines on the size of 
microcrystals makes it possible to study the dispersion law of 
excitons in a wide range of values of the quasimomentum 
and it provides a new method for investigating the energy 
band structure of semiconductor crystals. 

The authors are deeply grateful to A. L. ~ f r o s  for valu- 
able discussions. 
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The optical spectra of semiconductor microcrystals grown in transparent
matrix of oxide glass are investigated. The size of microcrystals was var-
ied in a controlled manner from a few tens to a few hundreds of angstroms.
The microcrystal embedded in wide gap matrix represents three-dimensional
potential well for electrons, holes and excitons. The optical properties of
such zero-dimensional semiconductor structures are shown to be governed
by the structure of energy spectra of confined electron-hole pairs. The phe-
nomenon of the microcrystals ionization at interband optical excitation is
observed. The Auger process in microcrystals containing two nonequilib-
rium electron-hole pairs is proposed to be responsible for this effect. The
experimental dependencies of the ionization rate as a function of excitation
intensity and the microcrystal size are in a good agreement with the theo-
retical predictions of the Auger recombiantion model.

PACS numbers: 78.90.+t

Optics of semiconductor microcrystals embedded in dielectric matrices have
been a subject of very intensive investigations for the 1ast years [1, 2]. Actually,
there are two reasons for this. The first reason is a fundamental character of phe-
nomena which dominate the energy spectum of electronic states in microcrystals.
It is well established now that a semiconductor microcrystal in a wide-band matrix
represents a three-dimensionally confined quantum well foτ quasiparticles. When
microcrystals have sizes comparable to the Bohr radius of the exciton in the bulk
semiconductor the resulting quantum confinement strongly modifies the optical
spectra. The second reason is possible device applications which are due to the
expected largely enhanced optical nonlinearities [3] and electrooptical effects [4]
in semiconductor-doped glasses.

The purpose of this talk is to give a short review of the present situation in
the studies of the zero-dimensional semiconductor systems. The growth technique
and optical spectra of microcrystals in a glass matrix will be discussed at some
length. Another problem to be discussed is the energy spectra of zero-dimensionally

(5)
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confined electron-hole pairs in quantum semiconductor dots. And finally, the role .

of Auger-processes in photoionization of semiconductor microcrystals in a glass
matrix will be regarded.

1. Semiconductor microcrystals in a glass matrix: growth and optical
spectra

The developed technologies make it possible to grow the microcrystals of sem-
iconductor compounds in glassy [5], crystalline [6] and aqueous matrices [7]. The
growth of microcrystals in solid matrices is based on the process of diffusion — con-
trolled phase decomposition of a super saturated solid solution. The recondensation
stage of the process, when the large particles grow at the expense of dissolution of
small ones, was investigated theoretically by Lifshits and Slesov. The kinetics of
growth is described by the following expression [8]

where the diffusion coefficient D and equilibrium concentration of the solution C
depend exponentially on temperature; σ is a coefficient proportional to interfacing
surface tension, τ - time duration of annealing process. Mean value of the micro
crystal radius may be measured off small-angle X-ray scattering [5] or with the
use of TEM technique [9]. It was also shown that a steady-state size distribution
is formed in the course of recondensation growth and an analytical expression for
it was obtained [8].

Thus, the technique of diffused-controlled growth of semiconductor micro
crystals makes it possible to vary the size of particles starting from a few tenths
of angstroms. The steady-state size distribution of microcrystals is rather narrow
and may be taken into account in calculations, since the analytical expression for
it is known. Further investigations of the growth process are in progress now. A
biosynthesis of CdS microcrystals was announced recently [10]. Sol-gel technology
of silicate glass production was shown to be useful for microcrystals growth [11].
The Ge microcrystals embedded in SiO2 thin films were obtained with rf sputtering
technique [12].

The optical transparency of an oxide glass matrix makes it possible to apply
all of the methods of optical spectroscopy to study such zero-dimensional system.
The Figure 1 shows the absorption spectra of glass samples containing CdSe, CdS,
CuBr and CuCl microcrystals. It is seen that spectra reveal the typical excitonic
structure of near band-gap transitions. This structure is due to the spin-orbit
splitting in cubic materials (CuBr, CuCI) and to the spin-orbit and crystal field
splitting in hexagonal semiconductors (CdS, CdSe). The absorption spectra as
well as luminescence and Raman spectra show that the semiconductor particles
grown in glass matrix have the crystalline stucture and sufficiently high spec-
troscopic quality. The X-ray scattering experiments were carried out recently for
investigation of structural modifications of CdS [10] and CdSe [13] microcrystals.
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2. Energy spectrum of electronic states in semiconductor quantum
dots

The semiconductor-doped glasses are of interest as a new class of objects
which may be used for the inVestigation of quantum confined effects in semi-
conductors. Besides size quantization, the spectra of electron-hole pairs are also
influenced by the Coulomb interaction, the energy of which depends on microcrys-
tal size too. So, the different cases, depending on relationship between these two
energies have to be regarded.

The Figure 2a shows the absorption spectra of glasses doped with CuCl
microcrystals of different sizes. As can be seen, the absorption is of excitonic nature
down to smallest sizes. The decrease of the radius of microcrystals leads to high
blue shift for both excitonic lines. This effect is due to the size quantization of an
exciton as a whole, because the binding energy of the exciton in the material is very ·
high (Εex ≈0.2 eV) and the radius of exciton is rather small (rex≈8Ǻ). The size
dependence of spectral position of both excitonic lines are shown in Fig. 2b. For
the exciton originating from the upper, nondegenerate subband Γ7 the dependence
is described by simple expression

where Ε9 is the band gap and Εex is the exciton binding energy. The numerical
factor results from the averaging of the Lifshits size distribution function. The
slope of the curve is determined by the value of the excitonic translation mass Μs.
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The special treatment is needed to describe the size dependence of spectral
position for excitons originating from the degenerate valence subband 8. It was
shown that this dependence is given by the following expression [14]

where Μh and Ml are the "heavy" and "light" exciton masses, Δ is the value of
spin-orbit splitting, Φ(Μl/Μh) is the root of transcendental equation [14].

Comparison between experimental and theoretical results enables us to de-
termine the masses of exciton for all three exciton subbands: Μs = (1.9 ± 0.2)m 0 ,
Μh = (2.6f 0.2)m 0 , and Ml = (1.5f 0.2)mß . It is necessary to emphasize that the
effective mass approximation gives the possibility to describe experimental results
for the values of microcrystal radius down to about á 15 Α.

The absorption spectra of CdS microcrystals of different sizes are shown in
Fig. 3a. It is seen that for the semiconductor material with a low binding energy
of the exciton (Εex ≈30 meV for CdS) the decrease of microcrystal size leads to
a large blue shift of the absorption band edge. Oscillations in absorption spectra
of microcrystals with radius less than the exciton radius (r ex 30 A) are due to
quantum sublevels of conduction band [15]. As it is seen in Fig. 3b, the simple
analytical expression

with the electron effective mass m e = 0.2m0 gives the possibility to describe the
size dependence of the blue shift only for the forbidden gap width. It is clear that a
nonparabolicity of the electron dispersion law and the finite depth of the quantum
well have to be taken into account. The theoretical investigations of the energy
spectrum of electron-hole pairs for the real band stucture of the material under
investigation are in progress now [16].

3. Auger-ionization of semiconductor microcrystals in glass matrix

It is well known now that optical properties of semiconductor-doped glasses
are affected by photon fluency. One may observe light-induced effects of the lumi-
nescence intensity degradation (the darkening effect [3]), changes of microcrystals
optical absorption spectra [17] and a decrease of the carrier life-time [18]. All of
the effects are usually revealed at room temperatures but heating at 300 — 400 °C
results in their disappearance.

We suggest that these effects are due to the photoionization of microcrystals
in a glass matrix. The possibility of that process was demonstrated experimentally
in the studies of the thermally stimulated luminescence (TSL) [17]. Figure 4a shows
the TSL curves for two samples which have been illuminated at T = 77 K with
light and then heated at a constant rate 0.1 K/s. The first sample was undoped and
the second one was doped by CdS microcrystals with α≈30Ǻ. The first sample
was subjected to UV-light irradiation with ħωex ≈ 6 eV which is in the spectral
range of the interband absorption of the glass. The TSL curve for this sample
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which was measured within the spectral range of the intrinsic luminescence of
glass is shown in Fig. 4a by a solid line. It is a typical curve which is due to the
well-known electron capture centers in the glass (E1-centers [19]).

The second sample doped with CdS microcrystals was subjected to light irra-
diation from the region of the absorption edge of the microcrystals (ħω ≈3.5 eV).
The TSL in this sample was registered within the spectral range corresponding
to the impurity luminescence of the microcrystals. This curve is shown in Fig. 4a
by points. A coincidence of these curves directly shows that nonequilibrium elec-
trons have a finite probability to leave microcrystals and be captured by the same
capture centers of glass in the vicinity of the micro crystal. Sample heating leads
to going back of the electrons to microcrystals with their subsequent radiative
recombination with holes. The inset in Fignre 4a shows the spectral dependence
of the ionization efficiency for microcrystals. It is seen that the ionization starts
at the energies of the excitation quanta corresponding to the band gap of micro
crystals. The increase of the efficiency at the energy of about 4.5 eV is due to the
above-barrier transitions of electrons from the microcrystal into the glass.

The effect of the -photoionization of microcrystals under photon flux is also
observed at room temperature. Figure 4b shows the relevant TSL curve. It is seen
that electrons in this case are captured by deeper traps and heating to about 600 K
is needed to empty them.

We suppose that the process of the photoionization of microcrystals is ac-
companied by a decrease of the carrier life-time, degradation of the luminescence
intensity, and other light-induced effects due to the strong enhancement of non-
radiative processes in them. The mechanism of the nonradiative recombination in
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the ionized microcrystal is beyond the scope of today's discussion. We shall discuss
now the microscopic mechanism of the photoionization of microcrystals.

Figure 5a shows the dependence of the photoluminescence intensity on time
of optical excitation measured on the samples with α = 22 Ǻ. The λ = 406
nm line of a krypton 1aser was used for the steady-state excitation. Studies were
performed at the temperature of T = 77 K. The kinetics of the degradation is
not exponential and, to a first approximation, we shall characterize it by the time
τ, during which the intensity is diminished by a factor of 2. Figure 5b shows the
degradation kinetics (in logarithmic scale) as a function of the absorbed power
for the samples of different microcrystals sizes. The ionization time η= is seen
to be strongly size-dependent and also inversely proportional to the square of
the absorbed power. This observation indicates the two-photon character of the
ionization process.

The qualitative model used for the analysis of the experimental results is as
follows:

1. The ionization of microcrystals is the result of the Auger recombination pro-
cess in the microcrystals containing two nonequilibrium electron-hole pairs.
It is the many-electron process in which the energy of the electron-hole pair
annihilation is transferred to the electron. If this energy is larger than the
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barrier height, the electron ejects into glass and the ionization of micro
crystals takes place. It is worthy to mention here that the role of the Auger
processes in microcrystals at high excitation densities has been demonstrated
experimentally [3].

2. The ionized microcrystals have a very low quantum efficiency of lumines-
cence. A strong enhancement of the nonradiative channel may, for instance,
be the result of an effective Auger recombination in ionized microcrystals
since three quasiparticles (one electron and two holes) appear as a result of
the one-photon excitation.

Thus, the luminescence intensity reflects in this case the number of yet non-
ionized microcrystals. The ionization rate (1/τ;) is equal to the probability for the
existence of the microcrystals with two nonequilibrium electron-hole pairs times
the Auger annihilation rate

where W01 and W02 are the probabilities of photon absorption in nonexcited micro
crystals and microcrystals containing one electron-hole pair; τ10 and τ20are carrier
life-times in the microcrystals with one and two electron-hole pairs. τA- 1 is the
probability of the Auger recombination in the microcrystal with two electron-hole
pairs. At low intensity of excitation W01 and W02~Ιex .

The calculation of the Auger recombination probability is a difficult prob-
lem because it demands the exact calculations of the small overlap integrals
of the electron-hole states. Therefore, the electron-hole wave functions of the

zero-dimensional quantum size structures should be considered within the many--
-band approximation. The second problem is that the electron ejection from the
microcrystal (ionization of them) demands consideration of the quantum stucture
with the finite depth of the quantum well. This consideration was made within the
framework of the Kane model by Al. Efros and V. Kharchenko [16]. Size depen-
dence of the rate of the Auger ionization in microcrystals was obtained by numer-
ical calculations for CdS (Ε0 = 2.6 eV, me = 0.2m0) microcrystals embedded in
the matrix of an oxide glass (Eg = 7 eV). The dependence obtained is shown in
Fig. 6 by the solid line. The probability of the Auger ionization is seen to be of
a pronounced oscillatory character. The maxima are related to the microcrystals
where electronic quantum-size levels cross the boundary of a continuous spectrum
or are situated in the neighborhood of it. In real glass samples the averaging of
oscillations of 1/τA takes place due to dispersion of microcrystal sizes and shapes,
fluctuation of the microcrystal-glass band offset, etc.

We obtained the experimental values of τΑ(α) from experimental depen-
dence τi(ά) using Eq.5. For that it is necessary to estimate the steady state share
of microcrystals containing two electron-hole pairs. Estimating that one as the
square of steady state share of one excited microcrystal W01τ0 ≈10-5we obtain
in our experiment that τΑ = (W01τo)2τi ≈10-10τi (the valueW01τ10≈10-5was
estimated from the absorbed power). The probability of Auger-disintegration τA-1
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obtained in such a way is shown in Fig. 6 by crosses. It is seen that the experimental
data are in a good agreement with theoretical dependence.

Thus the obtained results demonstrate that the ionization of microcrystals
embedded in the glass matrix is due to the Auger recombination which takes place
in the microcrystals containing two photoexcited electron-hole pairs at the same
time. Further studies, both experimental and theoretical, have to be performed
to understand the energy spectum of the ionized microcrystals and features of
reIaxation and recombination processed in them.
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